Advanced Higher Applied Mathematics (Mechanics)

Unit 1

Outcome 1.1 Motion In A Straight Line	NS	OT	VG
I know the meaning of <i>position</i> , <i>displacement</i> , <i>velocity</i> ,			
acceleration, uniform speed, uniform acceleration, scalar			
quantity, vector quantity.			
I can draw, interpret and use distance/time, velocity/time and			
acceleration/time graphs.			
I know the area under a velocity/time graph represents the			
distance travelled.			
I know the rates of change $v = \frac{dx}{dt} = \dot{x}$ and			
$a = \frac{d^2 x}{dt^2} = \frac{dv}{dt} = \dot{v} = \ddot{x}$			
I can derive, by calculus, and use the equations for motion in			
a straight line with constant acceleration, namely			
$v = u + at, s = ut + \frac{1}{2}at^2$ and from these			
$v^2 = u^2 + 2as, s = \frac{(u+v)}{2}t$			
I can solve analytically problems involving motion in one			
dimension under constant acceleration, including vertical			
motion under constant gravity.			
I can solve problems involving motion in one dimension			
where the acceleration is dependent on time i.e. $a = \frac{dv}{dt} = f(t)$			

Outcome 1.2 Relative Position and Velocity	NS	OT	VG
I know the meaning of the terms <i>relative position</i> , <i>relative</i>			
velocity and relative acceleration, air speed, ground speed			
and <i>nearest approach</i> .			
I am familiar with notation for relative position, velocity and			
acceleration vectors of 2 objects.			
I can resolve vectors into components.			
I can differentiate and integrate vector functions in time.			
I can use position, velocity and acceleration vectors to solve			
practical problems.			
I can solve problems involving collision courses and nearest			
approach.			

Outcome 1.3 Motion of Projectiles in a Vertical Plane	NS	OT	VG
I know the meaning of the terms <i>projectile</i> , <i>velocity</i> , <i>angle of</i>			
projection, trajectory, time of flight, range and constant			
gravity.			
I can solve the vector equation $\ddot{r} = -gj$ to obtain r in terms of			
its horizontal and vertical components.			
I can obtain and solve the equations of motion $\ddot{x} = 0, \ \ddot{y} = -g$,			
obtaining expressions for \dot{x} , \dot{y} , x and y in any particular case.			
I can find the time of flight, greatest height reached and the			
range of a projectile.			
I can find the maximum range of a projectile on a horizontal			
plane and the angle of projection to achieve this.			
I can find, and use, the equation of the trajectory of a			
projectile.			
I can solve problems in two-dimensional motion involving			
projectiles under a constant gravitational force and			
neglecting air resistance.			

Outcome 1.4 Forces and Newton's Laws of Motion	NS	OT	VG
I can understand the terms mass, force, weight, momentum,			
balanced and unbalanced forces, resultant force, equilibrium			
and resistive forces.			
I know Newton's first and third laws of motion.			
I can resolve forces in two dimensions to find their			
components.			
I can combine forces to find a resultant force.			
I can understand the concept of static and dynamic friction			
and limiting friction.			
I understand the terms frictional force, normal reaction,			
coefficient of friction μ , angle of friction λ , and know the			
equations $F = \mu R$ and $\mu = \tan \theta$.			
I can solve problems involving a particle or body in			
equilibrium under the action of certain forces.			
I know Newton's second law of motion, that force is the rate			
of change of momentum, and derive the equation $F = ma$.			
I can use this equation to form equations of motion to model			
practical problems on motion in a straight line.			
I can solve such equations modelling motion in one			
dimension, including cases where the acceleration is			
dependent on time.			
I can solve problems involving friction and problems on both			
rough and smooth inclined planes.			